Community Power Corporation

The Modular Biopower Company

Emerging Small Modular Biopower Systems

May 17, 2006
NAEMI Biomass & Business
Training Workshop

Art Lilley
Chairman

Agenda

- CPC
- Modular Biopower
- BioMax Description
- FAQs
- Case Studies

CPC's Mission

Mission:

Provide small, modular, biopower systems to the distributed generation market.

Product Development Facility Littleton, CO

Advantages of Small Biopower

- Uses abundant local biomass residues
- **✓** Fuel flexible
- Grid quality power
- Easy to site, connect to grid
- Small footprint = high power density
- Dispatchable
- Modular, able to parallel
- Cooling, heating, power = high efficiency
- Fully automatic
- Reliable: dual fuels
- Competitive against other distributed generators
- Standard systems, ideal for mass manufacture

Biomass Fuels for Downdraft Gasifier

Good

- Wood
- Nutshells
- Pellets
- Corn
- Cubed grasses

Difficult

- Sawdust
- Rice husks
- Leaves
- Corn Stover

BioMax Feedstocks Successfully Tested

As of February 2006

Pine Wood Chips

Ground Coconut Shell

Pine Bark Chips

Com Kemels

Almond Nut Skins & Shells

Pecan Shells

Pelletized Switchgrass

Pelletized Orange Skins

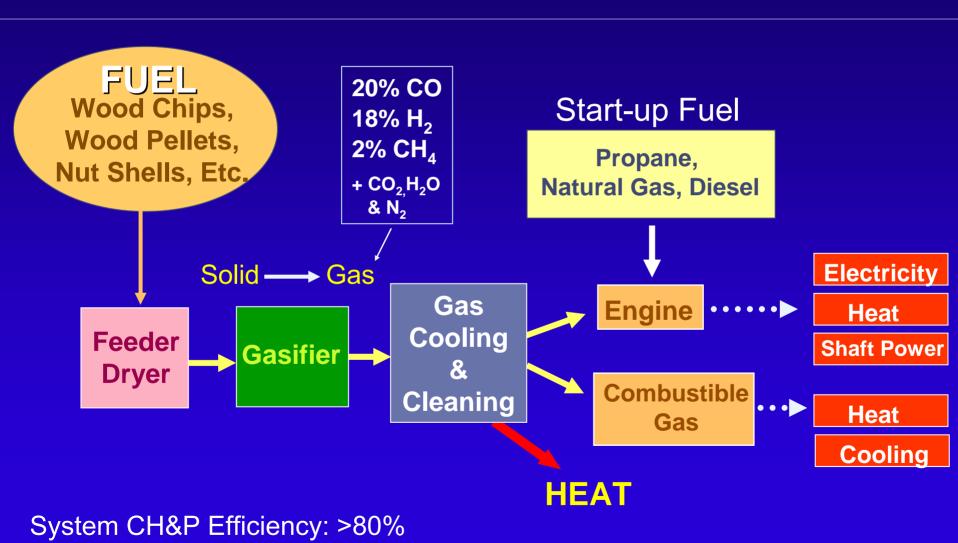
Pelletized Grape Skins

Army MRE Packaging

Tennis Shoe Materials + Wood

Date Seeds

Densified MSW 'Fluff'



Juniper Wood Chips

Russian Olive Chips

BioMax: Converts Woody Biomass to a Clean Fuel Gas for Power, Heat and Cooling

BioMax 25

CPC's Renewable Fuel-Gas Generator Is A **Versatile Distributed Generation Platform**

RUNS:

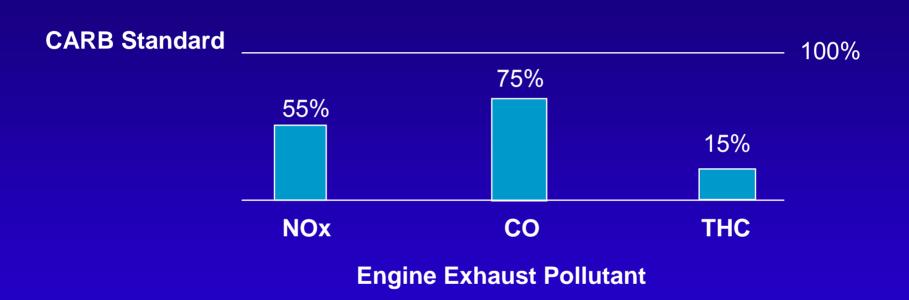
IC Engines

Stirling Engines

Fuel Cells

Microturbines

Driers & Chillers



EMISSIONS: BioMax Meets Current (CARB)* Standards

No Water, No Smoke, No Smell, No harmful effluents

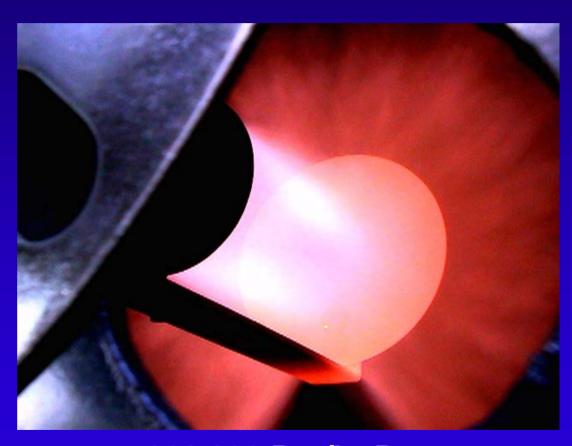
^{*} California Air Quality Resources Board Standards for Distributed Power and Heat (CHP)

BioMax Char and Ash Residues Are Non-Hazardous

"...the waste stream [from the BioMax] neither exhibits a hazardous waste characteristic, nor is it a listed hazardous waste."

Reference: Colorado Dept of Health and Environment; Hazardous Materials and Waste Management Division

CPC's New BioMax 50


New Features:

- 24/6 Operation
 - ~1.2 MWhe/day + 12 MM Btu/day
 - Greater control of gasifier
 - Automatic char & ash extraction
 - Continuous dry filtration
- Options:
 - Combined Heat and Power
 - Thermal
- Being upgraded to 75 kW

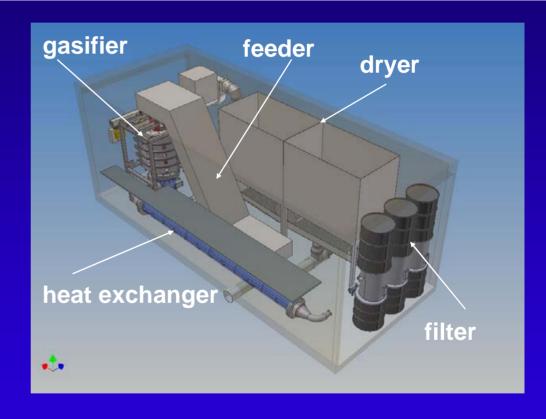
Pre-prototype Gasifier Testing

CPC's New Thermal System


- Combusts gas directly in burner
- Dual fuel –
 producer gas
 and propane
- No need for heat exchanger or filter

300,000 Btu/hr Burner (Same gasifier as for BM 25)

First Thermal Application: Lumber Drying


- 3,500 board foot capacity
- Primarily softwood
- Shakedown testing underway
- Host selection process ongoing

Dry Kiln

Containerized BioMax Systems

- 8' x 20' x 8' Container
 - Contains dryer, feeder, gasifier, heat exchanger, and filter.
 - Gen-set external

Containerized BM 25

BioMax Development Partners

Shell Renewables & Foundation

CALIFORNIA ENERGY COMMISSION DIE

US FOREST SERVICE

Development & Demonstration Sites

Location and Size (kW)

- Hoopa 15
- Zuni, NM 15
- Ruidoso, NM 15
- Walden, CO 15
- Starkville, Ms -15
- Philippines 15
- San Bernadino, CA –15
- Madison, WI 5
- Grand Forks, ND -15
- Truckee, CA 15
- Natick, MA 25
- Purdue 25
- Mt. Shasta, CA –25
- El Salvador 2 x 50
- TBD 50
- Big Bear Lake, CA 50
- Mt. Wachusett, MA 50

Completed Installed In-process

- How much biomass is required?
 - ~2 lb will yield 1 kWhe + 2 kWht
 - 50 dry lb/hr for 25 kW BioMax
- What kind of biomass is best?
 - Woodchips (most experience to date)
 - Nut shells (easy to feed, minimal pre-processing requirement)
 - Pellets (easy to feed, no pre-processing required)
- Does system need full-time operator?
 - No
 - Part-time attendant duties:
 - Start and stop system
 - Replenish biomass
 - Inspect/maintain
 - Respond to alarms

- What kind of maintenance is required?
 - Same as for any engine (filter change, oil change)
 - Clean out ash hopper once a week
 - Inspect gasifier internals once per month, remove tramp materials
- What is the footprint of the system?
 - System hardware (25 kW) 300 sq ft max
 - Biomass storage area determined by user
- How can I use the electricity?
 - Can tie to the grid, sell excess
 - Provide transfer switch, meet on-site loads

- How can I use the heat?
 - Can heat water and circulate it in hot water system, or
 - Can heat air and use it for space heating (or drying)

- Does the BioMax Consume Water?
 - No

- What does the BioMax emit as waste?
 - Dry ash with some carbon in it non hazardous
 - Ash depends on the biomass, but wood is 1% ash
 - 100 lbs of biomass = 1 lb of ash

What is life of BioMax?

- Engine life same as commercial engines
- Heat exchanger and filter 20 years
- Gasifier shell 20 years
- Gasifier internals undetermined, but easily serviceable

How much does a BioMax cost?

- Typical current price between \$4,500 and \$7,000/kW
- Will decrease with volume
- Depends on a host of factors best determined by a site visit

Is it economic at this cost?

Yes, see following case studies

Case Study 1: Combined Heat and Power

	<u>Financial</u>	Return
 Assumptions 	Low	Hi
 Capacity (kW) 	62	62
 Electricity (cents/kWh) 	8	12
 Gas Heat (\$/MM Btu) 	10	14
 Biomass – (\$/ton) 	30	0
 Conversion rate (lb/kWhe) 	2	1.8
 O&M Cost – (cents/kWh) 	3	2
 Capacity Factor – (%) 	65	75
 Capital Cost (\$/kW) 	4,500	3,500

Case Study 1: Combined Heat and Power

Internal Rate of Return

Results

Low Hi 40%

	Financial Return	
 Assumptions 	Low	Hi
Capacity (kW)	62	62
Electricity (cents/kWh)	8	12
Gas Heat (\$/MM Btu)	10	14
Biomass – (\$/ton)	30	0
 Conversion rate (lb/kWhe) 	2	1.8
 O&M Cost – (cents/kWh) 	3	2
 Capacity Factor – (%) 	65	75
Capital Cost (\$/kW)	4,500	3,500

Case Study 2: BioMax Vs PV

•	Assumptions	<u>BioMax</u>	<u>PV</u>
	 Annual energy (kWhe/yr) 	358,000	358,000
	 Capacity Factor – (%) 	65	20
	 Capacity (kW) 	62	200
	 Electricity (cents/kWh) 	11	11
	 Gas Heat (\$/MM Btu) 	10	0
	Fuel costs – (\$/ton)	30	0
	 O&M Cost – (cents/kWh) 	3	1
	 Capital Cost Now (\$/kW) 	4,500	7,250
	 Incentives 	0	0

Case Study 2: BioMax Vs PV

Net Present Value*

- Factor
 - Capital Cost
 - Electricity savings
 - Heat savings
 - O&M cost

BioMax	PV	<u>Delta</u>
283k	1,450k	1,167k
261k	261k	0
162k	0	162k
172k	24k	-138k

Net NPV Savings 1,191k

^{*10} yr life, 10% discount rate

Summary: Best Economics for BioMax

- Displace energy having high retail price
 - Electricity
 - Natural gas
 - Propane
- Competitive against other renewables
 - Capital cost advantage
 - Capacity factor advantage
 - Dispatchable
- Use low cost local Forest or Ag residues
 - At a natural collection point for biomass (e.g. enterprise)
 - Avoid high disposal costs
- Use both power and heat
 - Year round thermal load

Community Power Corporation

www.gocpc.com

724-348-6386